1995 AHSME Problems/Problem 17

Problem

Given regular pentagon $ABCDE$, a circle can be drawn that is tangent to $\overline{DC}$ at $D$ and to $\overline{AB}$ at $A$. The number of degrees in minor arc $AD$ is

1995 AHSME num.17.png

$\mathrm{(A) \ 72 } \qquad \mathrm{(B) \ 108 } \qquad \mathrm{(C) \ 120 } \qquad \mathrm{(D) \ 135 } \qquad \mathrm{(E) \ 144 }$

Solution

Define major arc DA as $DA$, and minor arc DA as $da$. Extending DC and AB to meet at F, we see that $\angle CFB=36=\frac{DA-da}{2}$. We now have two equations: $DA-da=72$, and $DA+da=360$. Solving, $DA=216$ and $da=144\Rightarrow \mathrm{(E)}$.

See also

1995 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions