2011 AMC 10B Problems/Problem 24

Revision as of 11:27, 22 July 2013 by Gkhsieh (talk | contribs) (Solution)

Problem

A lattice point in an $xy$-coordinate system is any point $(x, y)$ where both $x$ and $y$ are integers. The graph of $y = mx +2$ passes through no lattice point with $0 < x \le 100$ for all $m$ such that $1/2 < m < a$. What is the maximum possible value of $a$?

$\textbf{(A)}\ \frac{51}{101} \qquad\textbf{(B)}\ \frac{50}{99} \qquad\textbf{(C)}\ \frac{51}{100} \qquad\textbf{(D)}\ \frac{52}{101} \qquad\textbf{(E)}\ \frac{13}{25}$

Solution

We see that for the graph of $y=mx+2$ to not pass through any lattice points its denominator must be greater than $100$. We see that the nearest fraction bigger than $\frac{1}{2}$ that does not have its denominator over $100$ is $\boxed{\frac{50}{99}$ (Error compiling LaTeX. Unknown error_msg).

See Also

2011 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png