2014 AMC 10A Problems/Problem 14

Revision as of 23:20, 7 February 2014 by Happiface (talk | contribs) (Used more elementary language in the solution and shrunk diagram.)

Problem

The $y$-intercepts, $P$ and $Q$, of two perpendicular lines intersecting at the point $A(6,8)$ have a sum of zero. What is the area of $\triangle APQ$?

$\textbf{(A)}\ 45\qquad\textbf{(B)}\ 48\qquad\textbf{(C)}\ 54\qquad\textbf{(D)}\ 60\qquad\textbf{(E)}\ 72$

Solution

[asy]//Needs refining size(12cm); fill((0,10)--(6,8)--(0,-10)--cycle,rgb(.7,.7,.7)); for(int i=-2;i<=8;i+=1)   draw((i,-12)--(i,12),grey); for(int j=-12;j<=12;j+=1)   draw((-2,j)--(8,j),grey); draw((-3,0)--(9,0),linewidth(1),Arrows); //x-axis draw((0,-13)--(0,13),linewidth(1),Arrows); //y-axis dot((0,0)); dot((6,8)); draw((-2,10.66667)--(8,7.33333),Arrows); draw((7.33333,12)--(-0.66667,-12),Arrows); draw((6,8)--(0,8)); draw((6,8)--(0,0)); draw(rightanglemark((0,10),(6,8),(0,-10),20)); label("$A$",(6,8),NE); label("$a$", (0,5),W); label("$a$",(0,-5),W); label("$a$",(3,4),NW);  [/asy] Note that if the $y$-intercepts have a sum of $0$, the distance from the origin to each of the intercepts must be the same. Call this distance $a$. Since the $\angle PAQ = 90^\circ$, the length of the median to the midpoint of the hypotenuse is equal to half the length of the hypotenuse. Since the median's length is $\sqrt{6^2+8^2} = 10$, this means $a=10$, and the length of the hypotenuse is $2a = 20$. Since the $x$-coordinate of $A$ is the same as the altitude to the hypotenuse, $[APQ] = \dfrac{20 \cdot 6}{2} = \boxed{\textbf{(D)} \: 60}$.

See Also

2014 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png