2005 AIME II Problems/Problem 14

Revision as of 20:54, 20 December 2014 by Ryanyz10 (talk | contribs)

Problem

In triangle $ABC, AB=13, BC=15,$ and $CA = 14.$ Point $D$ is on $\overline{BC}$ with $CD=6.$ Point $E$ is on $\overline{BC}$ such that $\angle BAE\cong \angle CAD.$ Given that $BE=\frac pq$ where $p$ and $q$ are relatively prime positive integers, find $q.$

Solution

[asy] pointpen = black; pathpen = black + linewidth(0.7); pen f = fontsize(10); pair C = (0,0), B=(15,0), A=IP(CR(B,13), CR(C,14)), D=(6,0), E = (4410/463,0); D(MP("A",A,N,f)--MP("B",B,f)--MP("C",C,f)--A--MP("D",D,f)--A--MP("E",E,f)); MP("6",(D+C)/2,f);MP("13",(A+B)/2,NE,f);MP("14",(A+C)/2,NW,f);MP("",(D+B)/2,N,f); D(anglemark(C,A,D,50)); D(anglemark(E,A,B,50)); [/asy]

By the Law of Sines and since $\angle BAE = \angle CAD, \angle BAD = \angle CAE$, we have

$\begin{align*}
\frac{CD \cdot CE}{AC^2} &= \frac{\sin CAD}{\sin ADC} \cdot \frac{\sin CAE}{\sin AEC}  

= \frac{\sin BAE \sin BAD}{\sin ADB \sin AEB} = \frac{\sin BAE}{\sin AEB} \cdot \frac{\sin BAD}{\sin ADB}\\ &= \frac{BE \cdot BD}{AB^2}

\end{align*}$ (Error compiling LaTeX. Unknown error_msg)

Substituting our knowns, we have $\frac{CE}{BE} = \frac{3 \cdot 14^2}{2 \cdot 13^2} = \frac{BC - BE}{BE} = \frac{15}{BE} - 1 \Longrightarrow BE = \frac{13^2 \cdot 15}{463}$. The answer is $q = \boxed{463}$.

See also

2005 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png