1986 AHSME Problems/Problem 24

Revision as of 01:42, 24 October 2014 by Timneh (talk | contribs) (Created page with "==Problem== Let <math>p(x) = x^{2} + bx + c</math>, where <math>b</math> and <math>c</math> are integers. If <math>p(x)</math> is a factor of both <math>x^{4} + 6x^{2} + 25</ma...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Let $p(x) = x^{2} + bx + c$, where $b$ and $c$ are integers. If $p(x)$ is a factor of both $x^{4} + 6x^{2} + 25$ and $3x^{4} + 4x^{2} + 28x + 5$, what is $p(1)$?

$\textbf{(A)}\ 0\qquad \textbf{(B)}\ 1\qquad \textbf{(C)}\ 2\qquad \textbf{(D)}\ 4\qquad \textbf{(E)}\ 8$

Solution

See also

1986 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png