2016 AMC 10A Problems/Problem 1

Revision as of 14:17, 5 February 2016 by Ghghghghghghghgh (talk | contribs) (Solution 3)

Problem

What is the value of $\dfrac{11!-10!}{9!}$?

$\textbf{(A)}\ 99\qquad\textbf{(B)}\ 100\qquad\textbf{(C)}\ 110\qquad\textbf{(D)}\ 121\qquad\textbf{(E)}\ 132$

Solution 1

Factoring out the $10!$ from the numerator and cancelling out the $9!$s in the numerator and denominator, we have: \[\frac{11!-10!}{9!} = \frac{11 \cdot 10! - 1 \cdot 10!}{9!} =  \frac{(11 - 1) \cdot (10!)}{9!} = 10 \cdot 10 =\boxed{\textbf{(B)}\;100.}\]


Solution 2

We can use subtraction of fractions to get \[\frac{11!-10!}{9!} = \frac{11!}{9!} - \frac{10!}{9!}\] which will get us $110 -10 = \boxed{\textbf{(B)}\;100.}$

Solution 3

Factoring out $9!$ gives $\frac{11!-10!}{9!} = \frac{9!(11 \cdot 10 - 10)}{9!} = 110-10=\boxed{\textbf{(B)}~100}$.

See Also

2016 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2016 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png