2003 AMC 12A Problems/Problem 14

Revision as of 17:33, 3 February 2017 by Toneloke (talk | contribs) (Solution 1)

Problem

Points $K, L, M,$ and $N$ lie in the plane of the square $ABCD$ such that $AKB$, $BLC$, $CMD$, and $DNA$ are equilateral triangles. If $ABCD$ has an area of 16, find the area of $KLMN$.

[asy] unitsize(2cm); defaultpen(fontsize(8)+linewidth(0.8)); pair A=(-0.5,0.5), B=(0.5,0.5), C=(0.5,-0.5), D=(-0.5,-0.5); pair K=(0,1.366), L=(1.366,0), M=(0,-1.366), N=(-1.366,0); draw(A--N--K--A--B--K--L--B--C--L--M--C--D--M--N--D--A); label("$A$",A,SE); label("$B$",B,SW); label("$C$",C,NW); label("$D$",D,NE); label("$K$",K,NNW); label("$L$",L,E); label("$M$",M,S); label("$N$",N,W); [/asy]

$\textrm{(A)}\ 32\qquad\textrm{(B)}\ 16+16\sqrt{3}\qquad\textrm{(C)}\ 48\qquad\textrm{(D)}\ 32+16\sqrt{3}\qquad\textrm{(E)}\ 64$

Solution

Solution 1

Since the area of square ABCD is 16, the side length must be 4. Thus, the side length of triangle AKB is 4, and the height of AKB, and thus DMC, is $2\sqrt{3}$.

The diagonal of the square KNML will then be $4+4\sqrt{3}$. From here there are 2 ways to proceed:

First: Since the diagonal is $4+4\sqrt{3}$, the side length is $\frac{4+4\sqrt{3}}{\sqrt{2}}$, and the area is thus $\frac{16+48+32\sqrt{3}}{2}=\boxed{\mathrm{(D)}\ 32+16\sqrt{3}}$.

Solution 2

Since a square is a rhombus, the area of the square is $\frac{d_1d_2}{2}$, where $d_1$ and $d_2$ are the diagonals of the rhombus. Since the diagonal is $4+4\sqrt{3}$, the area is $\frac{(4+4\sqrt{3})^2}{2}=\boxed{\mathrm{(D)}\ 32+16\sqrt{3}}$.

See Also

2003 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png