2010 AMC 8 Problems/Problem 24

Revision as of 00:42, 17 November 2017 by Kinglogic (talk | contribs) (Solution)

Problem

What is the correct ordering of the three numbers, $10^8$, $5^{12}$, and $2^{24}$?

$\textbf{(A)}\ 2^{24}<10^8<5^{12}\\ \textbf{(B)}\ 2^{24}<5^{12}<10^8 \\  \textbf{(C)}\ 5^{12}<2^{24}<10^8 \\ \textbf{(D)}\ 10^8<5^{12}<2^{24} \\ \textbf{(E)}\ 10^8<2^{24}<5^{12}$

Solution 1

Use brute force. 10^8=100,000,000 5^{12}=44,140,625 2^{24}=16,777,216 Therefore, $2^{24}<10^8<5^{12} is the answer.$\boxed{A}$== Solution 2== Since all of the exponents are multiples of four, we can simplify the problem by taking the fourth root of each number. Evaluating we get$10^2=100$,$5^3=125$, and$2^6=64$. Since$64<100<125$, it follows that$\boxed{\textbf{(A)}\ 2^{24}<10^8<5^{12}}$ is the correct answer.

See Also

2010 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png