2006 iTest Problems/Problem 9

Revision as of 12:57, 28 November 2018 by Rockmanex3 (talk | contribs) (Solution to Problem 9 -- Sines and Cosines)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

If $\sin(x)  =  -\frac{5}{13}$ and $x$ is in the third quadrant, what is the absolute value of $\cos(\frac{x}{2})$?

$\mathrm{(A)}\,\frac{\sqrt{3}}{3}\quad\mathrm{(B)}\,\frac{2\sqrt{3}}{3}\quad\mathrm{(C)}\,\frac{6}{13}\quad\mathrm{(D)}\,\frac{5}{13}\quad\mathrm{(E)}\,-\frac{5}{13} \\ \quad\mathrm{(F)}\,\frac{\sqrt{26}}{26}\quad\mathrm{(G)}\,-\frac{\sqrt{26}}{26}\quad\mathrm{(H)}\,\frac{\sqrt{2}}{2}\quad\mathrm{(I)}\,\text{none of the above}$

Solution

Since $x$ is in the third quadrant, $\cos(x)$ is negative, so $\cos(x) = -\sqrt{1 - \tfrac{25}{169}} = -\tfrac{12}{13}$. Using the half-angle identity (or the double angle cosine identity), \begin{align*} |\cos(\frac{x}{2}) &= |\sqrt{\frac{\cos(x) + 1}{2}}| \\ &= \sqrt{\frac12 \cdot \frac{1}{13}} \\ &= \sqrt{\frac1{26}} \\ &= \frac{\sqrt{26}}{26} \end{align*} The answer is $\boxed{\textbf{(F)}}$.

See Also

2006 iTest (Problems, Answer Key)
Preceded by:
num-b=8
Followed by:
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 U1 U2 U3 U4 U5 U6 U7 U8 U9 U10