2007 UNCO Math Contest II Problems/Problem 4

Revision as of 04:11, 12 January 2019 by Timneh (talk | contribs) (Solution)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

If $x$ is a primitive cube root of one (this means that $x^3 =1$ but $x \ne 1$) compute the value of \[x^{2006}+\frac{1}{x^{2006}}+x^{2007}+\frac{1}{x^{2007}}.\]

Solution

$\fbox{+1}$

Since $x^3=1$ ,$x^{2006}=x^2$ , $x^{2007}=1$, $x+\frac{1}{x}=-1$

See Also

2007 UNCO Math Contest II (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10
All UNCO Math Contest Problems and Solutions