2007 UNCO Math Contest II Problems/Problem 8
Problem
A regular decagon is drawn in the coordinate plane with at and at . If denotes the point , compute the numerical value of the following product of complex numbers: where as usual.
Solution
Translate the center of the decagon to the origin. Now the vertices represent the roots of . Since the are each more than the roots of , they would be the roots of or . The product then is the constant term, or
See Also
2007 UNCO Math Contest II (Problems • Answer Key • Resources) | ||
Preceded by Problem 7 |
Followed by Problem 9 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 | ||
All UNCO Math Contest Problems and Solutions |