1953 AHSME Problems/Problem 36

Revision as of 00:41, 4 February 2020 by Rayfish (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Determine $m$ so that $4x^2-6x+m$ is divisible by $x-3$. The obtained value, $m$, is an exact divisor of:


$\textbf{(A)}\ 12 \qquad \textbf{(B)}\ 20 \qquad \textbf{(C)}\ 36 \qquad \textbf{(D)}\ 48 \qquad \textbf{(E)}\ 64$


Solution

Since the given expression is a quadratic, the factored form would be $(x-3)(4x+y)$, where $y$ is a value such that $-12x+yx=-6x$ and $-3(y)=m$. The only number that fits the first equation is $y=6$, so $m=-18$. The only choice that is a multiple of 18 is $\boxed{\textbf{(C) }36}$.

See Also

1953 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 35
Followed by
Problem 37
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png