1983 AIME Problems/Problem 3

Revision as of 11:21, 22 January 2007 by JBL (talk | contribs)

Problem

What is the product of the real roots of the equation $x^2 + 18x + 30 = 2 \sqrt{x^2 + 18x + 45}$?

Solution

If we expand by squaring, we get a quartic polynomial, which obviously isn't very helpful.

Instead, we substitute $y$ for $x^2+18x+30$ and our equation becomes $y=2\sqrt{y+15}$.

Now we can square; solving for $y$, we get $y=10$ or $y=-6$. The second solution gives us non-real roots, so we'll will go with the first. Substituting $x^2+18x+30$ back in for $y$,

$x^2+18x+30=10 \Rightarrow x^2+18x+20=0$. The product of our roots is therefore 20.


See also