1976 AHSME Problems/Problem 5

Revision as of 19:11, 12 July 2020 by Mathjams (talk | contribs) (Solution)

Problem 5

How many integers greater than $10$ and less than $100$, written in base-$10$ notation, are increased by $9$ when their digits are reversed?

$\textbf{(A)}\ 0 \qquad \textbf{(B)}\ 1 \qquad \textbf{(C)}\ 8 \qquad \textbf{(D)}\ 9 \qquad \textbf{(E)}\ 10$

Solution

Let our two digit number be $\overline{ab}$, where $a$ is the tens digit, and $b$ is the ones digit. So, $\overline{ab}=10a+b$. When we reverse our digits, it becomes $10b+a$. So, $10a+b+9=10b+a\implies a-b=1$. So, our numbers are $12, 23, 34, 45, 56, 67, 78, 89\Rightarrow \textbf{(C)}$.~MathJams

1976 AHSME (ProblemsAnswer KeyResources)
Preceded by
1975 AHSME
Followed by
1977 AHSME
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions