2020 AMC 8 Problems/Problem 19
Problem 19
A number is called flippy if its digits alternate between two distinct digits. For example, and are flippy, but and are not. How many five-digit flippy numbers are divisible by
Solution 1
To be divisible by , a number must first be divisible by and . By divisibility rules, the last digit must be either or , and the sum of the digits must be divisible by . If the last digit is , the first digit would be (because the digits alternate). So, the last digit must be , and we have We know the inverse exists because 2 is relatively prime to 3, and thus we can conclude that (or the second and fourth digits) is always a multiple of . We have 4 options: , and our answer is and ~samrocksnature
See also
2020 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 18 |
Followed by Problem 20 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.