2021 AMC 12B Problems/Problem 11
Contents
[hide]Problem
Triangle has and . Let be the point on such that . There are exactly two points and on line such that quadrilaterals and are trapezoids. What is the distance
Diagram
Solution 1 (analytic geometry)
Toss on the Cartesian plane with and . Then by the trapezoid condition, where . Since , point is of the way from to and is located at . Thus line has equation . Since and is parallel to the ground, we know has the same -coordinate as , except it'll also lie on the line . Therefore,
To find the location of point , we need to find the intersection of with a line parallel to passing through . The slope of this line is the same as the slope of , or , and has equation . The intersection of this line with is . Therefore point is located at
The distance is equal to the distance between and , which is
Solution 2
Using Stewart's Theorem we find . From the similar triangles and we have So
Solution 3
Let be the length . From the similar triangles and we have Therefore . Now extend line to the point on , forming parallelogram . As we also have so .
We now use the Law of Cosines to find (the length of ): As , we have (by Law of Cosines on triangle ) Therefore And . The answer is then
Video Solution by Punxsutawney Phil
https://YouTube.com/watch?v=yxt8-rUUosI&t=450s
Video Solution by OmegaLearn (Using properties of 13-14-15 triangle)
~ pi_is_3.14
Video Solution by Hawk Math
https://www.youtube.com/watch?v=p4iCAZRUESs
See Also
2021 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 10 |
Followed by Problem 12 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.