2013 AMC 8 Problems/Problem 3

Revision as of 13:47, 29 March 2021 by Scrabbler94 (talk | contribs) (more detailed solution)

Problem

What is the value of $4 \cdot (-1+2-3+4-5+6-7+\cdots+1000)$?

$\textbf{(A)}\ -10 \qquad \textbf{(B)}\ 0 \qquad \textbf{(C)}\ 1 \qquad \textbf{(D)}\ 500 \qquad \textbf{(E)}\ 2000$

Solution

We group the addends inside the parentheses two at a time: \begin{align*} -1 + 2 - 3 + 4 - 5 + 6 - 7 + \ldots + 1000 &= (-1 + 2) + (-3 + 4) + (-5 + 6) + \ldots + (-999 + 1000) \\ &= \underbrace{1+1+1+\ldots + 1}_{\text{500 1's}} \\ &= 500. \end{align*} Then the desired answer is $4 \times 500 = \boxed{\textbf{(E)}\ 2000}$.

See Also

2013 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png