1976 AHSME Problems/Problem 13

Revision as of 15:19, 20 April 2021 by Jiang147369 (talk | contribs) (Created page with "== Problem 13 == If <math>x</math> cows give <math>x+1</math> cans of milk in <math>x+2</math> days, how many days will it take <math>x+3</math> cows to give <math>x+5</math>...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem 13

If $x$ cows give $x+1$ cans of milk in $x+2$ days, how many days will it take $x+3$ cows to give $x+5$ cans of milk?

$\textbf{(A) }\frac{x(x+2)(x+5)}{(x+1)(x+3)}\qquad \textbf{(B) }\frac{x(x+1)(x+5)}{(x+2)(x+3)}\qquad\\ \textbf{(C) }\frac{(x+1)(x+3)(x+5)}{x(x+2)}\qquad \textbf{(D) }\frac{(x+1)(x+3)}{x(x+2)(x+5)}\qquad \\ \textbf{(E) }\text{none of these}$

Solution

First, the problem states:

$x$ cows $\qquad x+1$ cans $\qquad x+2$ days

Multiply the current number of cows by $\frac{x+3}{x}$ to get the number of cows you want, and divide the number of days by the same amount because an increase in cows will cause a decrease in time.

$x \cdot \frac{x+3}{x} \qquad x+1 \qquad (x+2) \cdot \frac{x}{x+3}$

Finally, multiply the current amount of cans by $\frac{x+5}{x+1}$ to get the number of cans you want, and multiply the number of days by the same amount because an increase in cans will cause an increase in time.

$x \cdot \frac{x+3}{x} \qquad (x+1) \cdot \frac{x+5}{x+1} \qquad (x+2) \cdot \frac{x}{x+3} \cdot \frac{x+5}{x+1}$

Therefore, our answer is $\boxed{\textbf{(A) }\frac{x(x+2)(x+5)}{(x+1)(x+3)}}$ ~jiang147369

See Also

1976 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png