1976 AHSME Problems/Problem 27
Contents
Problem
If then equals
Solution 1
Let and Clearly, and are both positive.
Note that from which
On the other hand, note that Finally, the answer is
~Someonenumber011 (Fundamental Logic)
~MRENTHUSIASM (Reconstruction)
Solution 2
Let and Clearly, and are both positive.
Note that
See also
1976 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 26 |
Followed by Problem 28 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.