1977 AHSME Problems/Problem 28
Contents
[hide]Problem
Let . What is the remainder when the polynomial is divided by the polynomial ?
Solution 1
Let be the remainder when is divided by . Then is the unique polynomial such that is divisible by , and .
Note that is a multiple of . Also, Each term is a multiple of . For example, Hence, is a multiple of , which means that is a multiple of . Therefore, the remainder is . The answer is (A).
Solution 2
We express the quotient and remainder as follows. Note that the solutions to correspond to the 6th roots of unity, excluding . Hence, we have , allowing us to set: We have values of that return . However, is quintic, implying the remainder is of degree — contradicted by the solutions. Thus, the only remaining possibility is that the remainder is a constant .
See also
1977 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 27 |
Followed by 29 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |