2021 Fall AMC 10A Problems/Problem 21

Revision as of 20:52, 22 November 2021 by Arcticturn (talk | contribs) (Solution 2 (Simple))

Problem

Each of the $20$ balls is tossed independently and at random into one of the $5$ bins. Let $p$ be the probability that some bin ends up with $3$ balls, another with $5$ balls, and the other three with $4$ balls each. Let $q$ be the probability that every bin ends up with $4$ balls. What is $\frac{p}{q}$?

$\textbf{(A)}\ 1 \qquad\textbf{(B)}\  4 \qquad\textbf{(C)}\  8 \qquad\textbf{(D)}\  12 \qquad\textbf{(E)}\ 16$

Solution 1 (Multinomial Numbers)

For simplicity purposes, we assume that the balls are indistinguishable and the bins are distinguishable.

Let $d$ be the number of ways to distribute $20$ balls into $5$ bins. We have \[p=\frac{5\cdot4\cdot\binom{20}{3,5,4,4,4}}{d} \text{ and } q=\frac{\binom{20}{4,4,4,4,4}}{d}.\] Therefore, the answer is \[\frac pq=\frac{5\cdot4\cdot\binom{20}{3,5,4,4,4}}{\binom{20}{4,4,4,4,4}}=\frac{5\cdot4\cdot\frac{20!}{3!5!4!4!4!}}{\frac{20!}{4!4!4!4!4!}}=\frac{5\cdot4\cdot(4!4!4!4!4!)}{3!5!4!4!4!}=\frac{5\cdot4\cdot4}{5}=\boxed{\textbf{(E)}\ 16}.\]

Remark

By the stars and bars argument, we get $d=\binom{20+5-1}{5-1}=\binom{24}{4}.$

~MRENTHUSIASM

Solution 2 (Simple)

Since both of the boxes will have $3$ boxes with $4$ balls in them, we can leave those out. There are $\binom {6}{3}$ = $20$ ways to choose where to place the $3$ and the $5$. After that, there are $\binom {8}{3} = 56$ ways to put the $3$ and $5$ balls being put into the boxes. For the $4,4,4,4,4$ case, after we canceled the $4,4,4$ out, we have $\binom {8}{4}$ = $70$ ways to put the $4$ balls inside the boxes. Therefore, we have $\frac {56\cdot 20}{70}$ which is equal to $8 \cdot 2$ = $\boxed {(E)16}$

~Arcticturn

Video Solution by Punxsutawney Phil

https://YouTube.com/watch?v=bvd2VjMxiZ4

See Also

2021 Fall AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png