2006 Cyprus MO/Lyceum/Problem 12

Revision as of 18:30, 17 October 2007 by Azjps (talk | contribs) (sol)

Problem

If $f(\alpha,\beta)= \begin{cases}\alpha & \textrm {if} \qquad \alpha=\beta \\ f(\alpha-\beta,\beta) & \textrm {if} \qquad \alpha>\beta \\ f(\beta-\alpha,\alpha) & \textrm {if} \qquad \alpha<\beta \end{cases}$

then $f(28,17)$ equals

A. $8$

B. $0$

C. $11$

D. $5$

E. $1$

Solution

$f(28,17) = f(11,17) = f(6,11) = f(5,6) = f(1,5) = f(4,1) = f(3,1) = f(2,1) = f(1,1) = 1\ \mathrm{(E)}$

See also

2006 Cyprus MO, Lyceum (Problems)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30