2000 AIME I Problems/Problem 1

Revision as of 18:19, 11 November 2007 by Minsoens (talk | contribs)

Problem

Find the least positive integer $n$ such that no matter how $10^{n}$ is expressed as the product of any two positive integers, at least one of these two integers contains the digit $0$.

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See also

2000 AIME I (ProblemsAnswer KeyResources)
Preceded by
First Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions