2023 AMC 10A Problems/Problem 10

Revision as of 19:49, 9 November 2023 by Itsmenoobieboy (talk | contribs) (Added See Also)

Problem

Maureen is keeping track of the mean of her quiz scores this semester. If Maureen scores an $11$ on the next quiz, her mean will increase by $1$. If she scores an $11$ on each of the next three quizzes, her mean will increase by $2$. What is the mean of her quiz scores currently? $\textbf{(A) }4\qquad\textbf{(B) }5\qquad\textbf{(C) }6\qquad\textbf{(D) }7\qquad\textbf{(E) }8$

Solution 1

Let $a$ represent the amount of tests taken previously and $x$ the mean of the scores taken previously.

We can write the equation $(ax+11)/a+1 = x+1$ and $(ax+33)/a+3 = x+2$.

Expanding, $ax+11 = ax+a+x+1$ and $ax+33 = ax+2a+3x+6$.

This gives us $a+x = 10$ and $2a+3x = 27$. Solving for each variable, $x=7$ and $a=3$. (D)

~walmartbrian ~Shontai ~andyluo

See Also

2023 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png