2023 AMC 10A Problems/Problem 4

Revision as of 22:13, 9 November 2023 by Eevee9406 (talk | contribs) (undo)

Problem

A quadrilateral has all integer sides lengths, a perimeter of $26$, and one side of length $4$. What is the greatest possible length of one side of this quadrilateral?

$\textbf{(A) }9\qquad\textbf{(B) }10\qquad\textbf{(C) }11\qquad\textbf{(D) }12\qquad\textbf{(E) }13$

Solution 1

Let's use the triangle inequality. We know that for a triangle, the 2 shorter sides must always be longer than the longest side. Similarly for a convex quadrilateral, the shortest 3 sides must always be longer than the longest side. Thus, the answer is $\frac{26}{2}-1=13-1=\boxed {\textbf{(D) 12}}$

~zhenghua

Solution 2

Say the chosen side is $a$ and the other sides are $b,c,d$.

By the Generalised Polygon Inequality, $a<b+c+d$. We also have $a+b+c+d=26\Rightarrow b+c+d=26-a$.

Combining these two, we get $a<26-a\Rightarrow a<13$.

The smallest length that satisfies this is $a=\boxed {\textbf{(D) 12}}$

~not_slay

Solution 3 (Fast)

By Brahmagupta's Formula, the area of the rectangle is defined by $\sqrt{(s-a)(s-b)(s-c)(s-d)}$ where $s$ is the semi-perimeter. If the perimeter of the rectangle is $26$, then the semi-perimeter will be $13$. The area of the rectangle must be positive so the difference between the semi-perimeter and a side length must be greater than $0$ as otherwise, the area will be $0$ or negative. Therefore, the longest a side can possibly be in this rectangle is $\boxed {\textbf{(D) 12}}$

~South

See Also

2023 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png