2024 AIME I Problems/Problem 5

Revision as of 18:14, 2 February 2024 by Eevee9406 (talk | contribs)

Problem

Rectangles $ABCD$ and $EFGH$ are drawn such that $D,E,C,F$ are collinear. Also, $A,D,H,G$ all lie on a circle. If $BC=16$,$AB=107$,$FG=17$, and $EF=184$, what is the length of $CE$?

Solution 1 (need help with diagram)

Suppose $DE=x$. Extend $AD$ and $GH$ until they meet at $P$. From the Power of a Point Theorem, we have $(PH)(PG)=(PD)(PA)$. Substituting in these values, we get $(x)(x+184)=(17)(33)$. Using simple guess and check, we find that $x=3$ so $EC=\boxed{104}$. -alexanderruan

Solution 2

We use simple geometry to solve this problem.

[asy] import graph; unitsize(0.1cm);  pair A = (0,0);pair B = (107,0);pair C = (107,16);pair D = (0,16);pair E = (3,16);pair F = (187,16);pair G = (187,33);pair H = (3,33); label("$A$", A, SW);label("$B$", B, SE);label("$C$", C, N);label("$D$", D, NW);label("$E$", E, S);label("$F$", F, SE);label("$G$", G, NE);label("$H$", H, NW); draw(E--D--A--B--C--E--H--G--F--C); /*Diagram by Technodoggo*/ [/asy]

We are given that $A$, $D$, $H$, and $G$ are concyclic; call the circle that they all pass through circle $\omega$ with center $O$. We know that, given any chord on a circle, the perpendicular bisector to the chord passes through the center; thus, given two chords, taking the intersection of their perpendicular bisectors gives the center. We therefore consider chords $HG$ and $AD$ and take the midpoints of $HG$ and $AD$ to be $P$ and $Q$, respectively.

[asy] import graph; unitsize(0.1cm);  pair A = (0,0);pair B = (107,0);pair C = (107,16);pair D = (0,16);pair E = (3,16);pair F = (187,16);pair G = (187,33);pair H = (3,33); label("$A$", A, SW);label("$B$", B, SE);label("$C$", C, N);label("$D$", D, NW);label("$E$", E, S);label("$F$", F, SE);label("$G$", G, NE);label("$H$", H, NW); draw(E--D--A--B--C--E--H--G--F--C);  pair P = (95, 33);pair Q = (0, 8); dot(A);dot(B);dot(C);dot(D);dot(E);dot(F);dot(G);dot(H);dot(P);dot(Q); label("$P$", P, N);label("$Q$", Q, W);  draw(Q--(107,8));draw(P--(95,0)); pair O = (95,8); dot(O);label("$O$", O, NW); /*Diagram by Technodoggo*/ [/asy]

We could draw the circumcircle, but actually it does not matter for our solution; all that matters is that $OA=OH=r$, where $r$ is the circumradius.

By the Pythagorean Theorem, $OQ^2+QA^2=OA^2$. Also, $OP^2+PH^2=OH^2$. We know that $OQ=DE+HP$, and $HP=\dfrac{184}2=92$; $QA=\dfrac{16}2=8$; $OP=DQ+HE=8+17=25$; and finally, $PH=92$. Let $DE=x$. We now know that $OA^2=(x+92)^2+8^2$ and $OH^2=25^2+92^2$. Recall that $OA=OH$; thus, $OA^2=OH^2$. We solve for $x$:

\begin{align*} (x+92)^2+8^2&=25^2+92^2 \\ (x+92)^2&=625+(100-8)^2-8^2 \\ &=625+10000-1600+64-64 \\ &=9025 \\ x+92&=95 \\ x&=3. \\ \end{align*}

The question asks for $CE$, which is $CD-x=107-3=\boxed{104}$.

~Technodoggo

Solution 3

First, draw a line from $A$ to $G$. $ADHG$ is then a cyclic quadrilateral.

The triangle formed by $A$ and $G$ and the intersection between lines $AB$ and $GF$ is similar to triangle $DHE$.

Solving similarity ratios gives $DE=3$, so $CE=107-3=\boxed{104}$. ~coolruler ~eevee9406

See also

2024 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png