1959 AHSME Problems/Problem 44

Revision as of 11:18, 22 July 2024 by Thepowerful456 (talk | contribs) (created solution page)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

The roots of $x^2+bx+c=0$ are both real and greater than $1$. Let $s=b+c+1$. Then $s$: $\textbf{(A)}\ \text{may be less than zero}\qquad\textbf{(B)}\ \text{may be equal to zero}\qquad$

$\textbf{(C)} \text{ must be greater than zero}\qquad\textbf{(D)}\ \text{must be less than zero}\qquad  \textbf{(E)}\text{ must be between -1 and +1}$

Solution

$\fbox{C}$

See also

1959 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 41
Followed by
Problem 43
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png