1957 AHSME Problems/Problem 46

Revision as of 11:31, 27 July 2024 by Thepowerful456 (talk | contribs) (diagram)

Problem

Two perpendicular chords intersect in a circle. The segments of one chord are $3$ and $4$; the segments of the other are $6$ and $2$. Then the diameter of the circle is:

$\textbf{(A)}\ \sqrt{89}\qquad  \textbf{(B)}\ \sqrt{56}\qquad  \textbf{(C)}\ \sqrt{61}\qquad  \textbf{(D)}\ \sqrt{75}\qquad \textbf{(E)}\ \sqrt{65}$

Solution

[asy]  import geometry;  point A = (0,0); point B = (6,3); point C = (8,0); point D, P;  circle c = circumcircle(A,B,C);  // Triangle ABC w/ Circumcircle draw(triangle(A,B,C)); dot(A); label("A",A,W); dot(B); label("B",B,N); dot(C); label("C",C,E); draw(c);  // Segment BD, Triangle ADC pair[] d = intersectionpoints(perpendicular(B,line(A,C)),c); D = d[0]; dot(D); label("D",D,S); draw(B--D); draw(triangle(A,D,C));  pair[] p = intersectionpoints(B--D,A--C); P = p[0]; dot(P); label("P",P,SW);  // Right angle mark markscalefactor = 0.0577; draw(rightanglemark(A,P,B));  // Length Labels label("$3$", midpoint(B--P), W); label("$4$", midpoint(P--D), W); label("$6$", midpoint(A--P), S); label("$2$", midpoint(P--C), S);  [/asy]

$\boxed{\textbf{(E) }\sqrt{65}}$.

See Also

1957 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 45
Followed by
Problem 47
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png