1957 AHSME Problems/Problem 50

Revision as of 14:48, 27 July 2024 by Thepowerful456 (talk | contribs) (created solution page)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

In circle $O$, $G$ is a moving point on diameter $\overline{AB}$. $\overline{AA'}$ is drawn perpendicular to $\overline{AB}$ and equal to $\overline{AG}$. $\overline{BB'}$ is drawn perpendicular to $\overline{AB}$, on the same side of diameter $\overline{AB}$ as $\overline{AA'}$, and equal to $BG$. Let $O'$ be the midpoint of $\overline{A'B'}$. Then, as $G$ moves from $A$ to $B$, point $O'$:

$\textbf{(A)}\ \text{moves on a straight line parallel to }{AB}\qquad \\ \textbf{(B)}\ \text{remains stationary}\qquad\\  \textbf{(C)}\ \text{moves on a straight line perpendicular to }{AB}\qquad\\  \textbf{(D)}\ \text{moves in a small circle intersecting the given circle}\qquad\\  \textbf{(E)}\ \text{follows a path which is neither a circle nor a straight line}$

Solution

$\fbox{\textbf{(B)}remains stationary}$.

See Also

1957 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 49
Followed by
Last Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png