2000 AMC 12 Problems/Problem 13
- The following problem is from both the 2000 AMC 12 #13 and 2000 AMC 10 #22, so both problems redirect to this page.
Problem
One morning each member of Angela's family drank an 8-ounce mixture of coffee with milk. The amounts of coffee and milk varied from cup to cup, but were never zero. Angela drank a quarter of the total amount of milk and a sixth of the total amount of coffee. How many people are in the family?
Solution 1
Let be the total amount of coffee, of milk, and the number of people in the family. Then each person drinks the same total amount of coffee and milk (8 ounces), so Regrouping, we get . Since both are positive, it follows that and are also positive, which is only possible when $p = 5\ \m
== Solution 2 (less rigorous) ==
One could notice that (since there are only two components to the mixture) Angela must have more than her "fair share" of milk and less than her "fair share" of coffee in order to ensure that everyone has$ (Error compiling LaTeX. Unknown error_msg)81/p.$So,
<cmath>\frac{1}{6} < \frac{1}{p}<\frac{1}{4}</cmath>
Which requires that$ (Error compiling LaTeX. Unknown error_msg)pp = 5\ \mathrm{(C)},p$is a whole number.
== Solution 3 ==
Again, let$ (Error compiling LaTeX. Unknown error_msg)c,$$ (Error compiling LaTeX. Unknown error_msg)m,p8p,c+m.c+m = 8p,m = 8p-cc = 8p-m.\frac{c}{6} + \frac{m}{4},8\frac{c}{6} + \frac{m}{4} = 8.c > 0m > 0,c = 8p-m < 8p.0 < c < 8p,24p > 24p-c > 16p.24p-c = 96,p > 4,p < 6.pp = 5\ \mathrm{(C)}$.
== Solution 4 ==
Let$ (Error compiling LaTeX. Unknown error_msg)c,$$ (Error compiling LaTeX. Unknown error_msg)m,pcm0\frac{c}{6} + \frac{m}{4} = 82c + 3m = 96c + m = 8p2c + 2m = 16p16p9616m16m = 16kk0m0k2c0k1m = 16c = 24c + m = 24 + 16 = 40 = 8pp = 5\ \mathrm{(C)}$.
== Solution 5 ==
Let$ (Error compiling LaTeX. Unknown error_msg)mct = m + c4\frac{1}{3}c > 0t > 326\frac{1}{2}m > 0t < 4832 < t < 48$.
Since$ (Error compiling LaTeX. Unknown error_msg)t8t40\frac{40}{8} = 5\mathrm{(C)}$.
~ Nafer
== Solution 6 (Constraints) ==
If there were 4 people in the family, and each of them drank exactly the same amount of coffee and milk as Angela, there would be too much coffee. If there were 6 people in the family, and each of them drank exactly the same amount of coffee and milk as Angela, there would be not enough milk. Thus, it has to be$ (Error compiling LaTeX. Unknown error_msg)\boxed{5}$.
== Solution 7 (Guess and check) == The number of ounces that Angela's family drank has to be a multiple of 8, so we can find the right answer by guessing random values for the number of ounces of coffee and milk Angela drank. With Angela drinking 4 ounces of milk and 4 ounces of coffee, we get 40 total ounces Angela's family drank. Dividing that by 8(each person drank 8 ounces) we get 5 members who drank the coffee with milk, or$ (Error compiling LaTeX. Unknown error_msg)\boxed{C}$~ Mathyguy88
==Video Solution 1== https://youtu.be/UGcqyhh03LQ?si=WKAVn2VitpmeCvSd ~ Pi Academy
==Video Solution 2== https://youtu.be/k6G5BjjILGY https://www.youtube.com/watch?v=OT42J21ZNC8&feature=youtu.be
https://www.youtube.com/watch?v=7QU8OlnljHw ~David
==Sidenote== If we now solve for$ (Error compiling LaTeX. Unknown error_msg)cmm=16c=24162444$ ounces of coffee.
See also
2000 AMC 12 (Problems • Answer Key • Resources) | |
Preceded by Problem 12 |
Followed by Problem 14 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
2000 AMC 10 (Problems • Answer Key • Resources) | ||
Preceded by Problem 21 |
Followed by Problem 23 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.