Cauchy's Integral Formula
Cauchy's Integral Formula is a fundamental result in complex analysis. It states that if is a subset of the complex plane containing a simple counterclockwise loop and the region bounded by , and is a complex-differentiable function on , then for any in the interior of the region bounded by ,
Proof
Let denote the interior of the region bounded by . Let denote a simple counterclockwise loop about of radius . Since the interior of the region bounded by is an open set, there is some such that for all . For such values of , by application of Cauchy's Integral Theorem.
Since is differentiable at , for any we may pick an arbitarily small such that whenever . Let us parameterize as , for . Since (again by Cauchy's Integral Theorem), it follows that Since and can simultaneously become arbitrarily small, it follows that which is equivalent to the desired theorem.
This article is a stub. Help us out by expanding it.