2010 AMC 12B Problems/Problem 15

Revision as of 16:19, 12 July 2010 by Lg5293 (talk | contribs) (Created page with '== Problem 15 == For how many ordered triples <math>(x,y,z)</math> of nonnegative integers less than <math>20</math> are there exactly two distinct elements in the set <math>\{i^…')
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem 15

For how many ordered triples $(x,y,z)$ of nonnegative integers less than $20$ are there exactly two distinct elements in the set $\{i^x, (1+i)^y, z\}$, where $i=\sqrt{-1}$?

$\textbf{(A)}\ 149 \qquad \textbf{(B)}\ 205 \qquad \textbf{(C)}\ 215 \qquad \textbf{(D)}\ 225 \qquad \textbf{(E)}\ 235$

Solution

See also

2010 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions