2011 AMC 10B Problems/Problem 20
Problem
Rhombus has side length
and
°. Region
consists of all points inside the rhombus that are closer to vertex
than any of the other three vertices. What is the area of
?
Solution
Any point on the perpendicular bisector of two other points is equidistant from both of those points. This line will divide divide the rhombus into two sections. The region containing is also the region where the points will be closer to
than the other vertex. The region
we are looking for is the intersection of the sections containing R from the perpendicular bisectors of
and
![[asy] unitsize(8mm); defaultpen(linewidth(0.8pt)+fontsize(10pt)); dotfactor=4; pair A=(4,0), B=(2,2sqrt(3)), C=(-2,2sqrt(3)), D=(0,0); fill((0,2sqrt(3))--B--(3,sqrt(3))--(2,(2sqrt(3))/3)--(0,(4sqrt(3))/3)--cycle,lightgray); draw(A--B--C--D--cycle); draw(D--(0,2sqrt(3))); draw(D--(3,sqrt(3))); draw(A--C); label("$A$",A,SE); label("$B$",B,NE); label("$C$",C,NW); label("$D$",D,SW); label("$2$",(B--C),N); [/asy]](http://latex.artofproblemsolving.com/3/f/c/3fc36913fb3575154e4d83fbc6b093217d22cb1c.png)
The region turns to be an irregular pentagon. We can make it easier to find the area of this by dividing it into a triangle and a trapezoid.
![[asy] unitsize(8mm); defaultpen(linewidth(0.8pt)+fontsize(10pt)); dotfactor=4; pair A=(0,2), B=(2sqrt(3),0), C=((4sqrt(3))/3,-2), D=((-4sqrt(3))/3,-2), E=(-2sqrt(3),0); pair O=(0,0); draw(A--B--C--D--E--cycle); draw(B--E); draw(A--O,gray); label("$A$",A,N); label("$B$",B); label("$C$",C,SE); label("$D$",D,SW); label("$E$",E,W); label("$O$",O,S); label("$1$",midpoint(E--A),NW); label("$1$",midpoint(B--A),NE); label("$\frac{1}{2}$",midpoint(A--O),E); label("$\frac{\sqrt{3}}{2}$",midpoint(B--O),S); label("$\frac{\sqrt{3}}{2}$",midpoint(E--O),S); [/asy]](http://latex.artofproblemsolving.com/c/5/8/c586c3c934d892f9ffb1ef3685a1dca9c49dbe99.png)
We know because they are each half of the sides of the rhombus.
and
are
triangles because
is an angle bisector of the
angle
We can solve for those triangles. The area of triangle
is
Another thing we can do is find the height of trapezoid Diagonal
back in the first diagram is equal to
because it would form two equilateral triangles. Because the diagonals of a rhombus bisect each other, the distance from
to
(in the second diagram) is
Subtract
from that, and we get the height of trapezoid
is
To find the area of the trapezoid, we still need to find the length of the other base,
![[asy] unitsize(8mm); defaultpen(linewidth(0.8pt)+fontsize(9pt)); dotfactor=4; pair A=(0,2), B=(2sqrt(3),0), C=((4sqrt(3))/3,-2), D=((-4sqrt(3))/3,-2), E=(-2sqrt(3),0); pair O=(0,0), X=((4sqrt(3))/3,0); draw(A--B--C--D--E--cycle); draw(B--E); draw(X--C,gray); label("$A$",A,N); label("$B$",B,NE); label("$C$",C,SE); label("$D$",D,SW); label("$E$",E,NW); label("$X$",X,NW); label("$\frac{1}{2}$",midpoint(X--C),W); label("$\sqrt{3}$",midpoint(B--E),N); label("$\frac{\sqrt{3}}{6}$",midpoint(X--B),N); [/asy]](http://latex.artofproblemsolving.com/9/5/7/9574ed13b1e82f16a9324e046d8588af490c89fd.png)
Since and
is another
and
is an isosceles trapezoid, so
The area of the trapezoid is
Find the total area of the pentagon
See Also
2011 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 19 |
Followed by Problem 21 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |