2005 AMC 10B Problems/Problem 7

Revision as of 17:35, 9 July 2011 by Joshxiong (talk | contribs)

Problem

A circle is inscribed in a square, then a square is inscribed in this circle, and finally, a circle is inscribed in this square. What is the ratio of the area of the smaller circle to the area of the larger square?

$\mathrm{(A)} \frac{\pi}{16} \qquad \mathrm{(B)} \frac{\pi}{8} \qquad \mathrm{(C)} \frac{3\pi}{16} \qquad \mathrm{(D)} \frac{\pi}{4} \qquad \mathrm{(E)} \frac{\pi}{2}$

Solution

Let the side of the largest square be $x$. It follows that the diameter of the inscribed circle is also $x$. Therefore, the diagonal of the square inscribed inscribed in the circle is $x$. The side length of the smaller square is $\dfrac{x}{\sqrt{2}}=\dfrac{x\sqrt{2}}{2}$. Similarly, the diameter of the smaller inscribed circle is $\dfrac{x\sqrt{2}}{2}$. Hence, its radius is $\dfrac{x\sqrt{2}}{4}$. The area of this circle is $\left(\dfrac{x\sqrt{2}}{4}\right)^2\pi=\dfrac{2\pi x^2}{16}=\dfrac{x^2\pi}{8}$, and the area of the largest square is $x^2$. The ratio of the areas is $\dfrac{\dfrac{x^2\pi}{8}}{x^2}=\boxed{\mathrm{(B)}\ \dfrac{\pi}{8}}$.

See Also

2005 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions