2012 AIME II Problems/Problem 6

Revision as of 14:44, 3 April 2012 by 1=2 (talk | contribs) (added solution tag, capitalized also)

Problem 6

Let $z=a+bi$ be the complex number with $\vert z \vert = 5$ and $b > 0$ such that the distance between $(1+2i)z^3$ and $z^5$ is maximized, and let $z^4 = c+di$. Find $c+d$.

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See Also

2012 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions