2013 AMC 12B Problems/Problem 16

Revision as of 17:11, 22 February 2013 by Aplus95 (talk | contribs)

Problem

Let $ABCDE$ be an equiangular convex pentagon of perimeter $1$. The pairwise intersections of the lines that extend the sides of the pentagon determine a five-pointed star polygon. Let $s$ be the perimeter of this star. What is the difference between the maximum and the minimum possible values of $s$.

$\textbf{(A)}\ 0 \qquad \textbf{(B)}\ \frac{1}{2} \qquad \textbf{(C)}\ \frac{\sqrt{5}-1}{2} \qquad \textbf{(D)}\  \frac{\sqrt{5}+1}{2} \qquad \textbf{(E)}\ \sqrt{5}$

Solution

See also

2013 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions