2013 AMC 10B Problems/Problem 13

Revision as of 16:02, 27 March 2013 by Bobthesmartypants (talk | contribs) (Solution)

Problem

Jo and Blair take turns counting from $1$ to one more than the last number said by the other person. Jo starts by saying "$1$", so Blair follows by saying $"1, 2"$ . Jo then says $"1, 2, 3"$ , and so on. What is the $53^{rd}$ number said?

$\textbf{(A)}\ 2\qquad\textbf{(B)}\ 3\qquad\textbf{(C)}\ 5\qquad\textbf{(D)}\ 6\qquad\textbf{(E)}\ 8$

Solution

We notice that the number of numbers said is incremented by one each time; that is, Jo says one number, then Blair says two numbers, then Jo says three numbers, etc. Thus, after nine "turns," $1+2+3+4+5+6+7+8+9=45$ numbers have been said. In the tenth turn, the eighth number will be the 53rd number said, as $53-45=8$. Since we're starting from 1 each time, the 53rd number said will be $\boxed{\textbf{(E) }8}$.

See also

2013 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions