2000 AMC 12 Problems/Problem 13

Revision as of 19:34, 3 July 2013 by Nathan wailes (talk | contribs) (See also)
The following problem is from both the 2000 AMC 12 #13 and 2000 AMC 10 #22, so both problems redirect to this page.

Problem

One morning each member of Angela’s family drank an 8-ounce mixture of coffee with milk. The amounts of coffee and milk varied from cup to cup, but were never zero. Angela drank a quarter of the total amount of milk and a sixth of the total amount of coffee. How many people are in the family?

$\text {(A)}\ 3 \qquad \text {(B)}\ 4 \qquad \text {(C)}\ 5 \qquad \text {(D)}\ 6 \qquad \text {(E)}\ 7$

Solution

Let $c$ be the total amount of coffee, $m$ of milk, and $p$ the number of people in the family. Then each person drinks the same total amount of coffee and milk (8 ounces), so \[\left(\frac{c}{6} + \frac{m}{4}\right)p = c + m\] Regrouping, we get $2c(6-p)=3m(p-4)$. Since both $c,m$ are positive, it follows that $6-p,p-4$ are also positive, which is only possible when $p = 5\ \mathrm{(C)}$.

See also

2000 AMC 12 (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2000 AMC 10 (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png