1993 AIME Problems/Problem 8

Revision as of 17:48, 9 July 2013 by NT2048 (talk | contribs) (Solution)

Problem

Let $S\,$ be a set with six elements. In how many different ways can one select two not necessarily distinct subsets of $S\,$ so that the union of the two subsets is $S\,$? The order of selection does not matter; for example, the pair of subsets $\{a, c\}\,$, $\{b, c, d, e, f\}\,$ represents the same selection as the pair $\{b, c, d, e, f\}\,$, $\{a, c\}\,$.

Solution 1

Call the two subsets $m$ and $n$. For each of the elements in $S$, we can assign it to either $m$, $n$, or both. This gives us $3^6$ possible methods of selection. However, because the order of the subsets does not matter, each possible selection is double counted, except the case where both $m$ and $n$ contain all $6$ elements of $S$. So our final answer is then $\frac {3^6 - 1}{2} + 1 = \boxed{365}$

Solution 2

Given one of ${6 \choose k}$ subsets with $k$ elements, the other also has $2^k$ possibilities; this is because it must contain all of the "missing" $n - k$ elements and thus has a choice over the remaining $k$. We want $\sum_{k = 0}^6 {6 \choose k}2^k = (2 + 1)^6 = 729$ by Binomial Theorem. But the order of the sets doesn't matter, so we get $\dfrac{729 - 1}{2} + 1 = \boxed{365}$.

See also

1993 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png