2014 AMC 10A Problems/Problem 9
Contents
Problem
The two legs of a right triangle, which are altitudes, have lengths and . How long is the third altitude of the triangle?
Solution 1
We find that the area of the triangle is . By the Pythagorean Theorem, we have that the length of the hypotenuse is . Dropping an altitude from the right angle to the hypotenuse, we can calculate the area in another way.
Let be the third height of the triangle. We have
Solution 2
Directly following from the formula for the area of a triangle, , we have that, for any right triangle, the product of the two legs of the triangle is equal to the product of the hypotenuse and the altitude to the hypotenuse. (This is always true because the two legs can be the base and the height of the triangle, and so can the hypotenuse and the altitude of the hypotenuse.)
To find the hypotenuse, we can apply Pythagoras to obtain
Let be the length of the third altutude - the altitude to the hypotenuse. We have
(Solution by bestwillcui1)
See Also
2014 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.