1950 AHSME Problems/Problem 12

Revision as of 16:40, 27 February 2016 by Ishankhare (talk | contribs) (Solution)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

As the number of sides of a polygon increases from $3$ to $n$, the sum of the exterior angles formed by extending each side in succession:

$\textbf{(A)}\ \text{Increases}\qquad\textbf{(B)}\ \text{Decreases}\qquad\textbf{(C)}\ \text{Remains constant}\qquad\textbf{(D)}\ \text{Cannot be predicted}\qquad\\ \textbf{(E)}\ \text{Becomes }(n-3)\text{ straight angles}$

Solution

By the Exterior Angles Theorem, the exterior angles of all convex polygons add up to $360^\circ,$ so the sum $\boxed{\mathrm{(C)}\text{ remains constant}.}$

See Also

1950 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png