2017 AMC 12A Problems/Problem 18

Revision as of 16:33, 8 February 2017 by Rajat.mittal (talk | contribs)

Problem

Let $S(n)$ equal the sum of the digits of positive integer $n$. For example, $S(1507) = 13$. For a particular positive integer $n$, $S(n) = 1274$. Which of the following could be the value of $S(n+1)$?

$\textbf{(A)}\ 1 \qquad\textbf{(B)}\ 3\qquad\textbf{(C)}\ 12\qquad\textbf{(D)}\ 1239\qquad\textbf{(E)}\ 1265$

Solution

Note that $n\equiv S(n)\bmod 9$, so $S(n+1)-S(n)\equiv n+1-n = 1\bmod 9$. So, since $S(n)=1274\equiv 5\bmod 9$, we have that $S(n+1)\equiv 6\bmod 9$. The only one of the answer choices $\equiv 6\bmod 9$ is $\boxed{(D)=\ 1239}$.

See Also

2017 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2017 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions