2017 AMC 12A Problems/Problem 24
Problem
Quadrilateral is inscribed in circle and has side lengths , and . Let and be points on
such that and . Let be the intersection of line and the line through parallel to . Let be the intersection of line and the line through parallel to . Let be the point on circle other than that lies on line . What is ?
Solution
It is easy to see that . First we note that with a ratio of . Then with a ratio of , so . Then we find the length of . Because the quadrilateral is cyclic, we can simply use the Law of Cosines. By Power of a Point, . Thus .
-solution by FRaelya
See Also
2017 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 23 |
Followed by Problem 25 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.