2017 AMC 12A Problems/Problem 21

Revision as of 07:58, 9 February 2017 by Afuous (talk | contribs) (Solution 1)

Problem

A set $S$ is constructed as follows. To begin, $S = \{0,10\}$. Repeatedly, as long as possible, if $x$ is an integer root of some polynomial $a_{n}x^n + a_{n-1}x^{n-1} + ... + a_{1}x + a_0$ for some $n\geq{1}$, all of whose coefficients $a_i$ are elements of $S$, then $x$ is put into $S$. When no more elements can be added to $S$, how many elements does $S$ have?

$\textbf{(A)}\ 4 \qquad \textbf{(B)}\ 5 \qquad\textbf{(C)}\ 7 \qquad\textbf{(D)}\ 9 \qquad\textbf{(E)}\ 11$

Solution 1

At first, $S=\{0,10\}$.

\begin{align*} 10x+10 & \quad\text{has root}\quad x=-1, & \quad\text{so now}\quad & S=\{-1,0,10\}. \\ -x^{10}-x^9-x^8-x^7-x^6-x^5-x^4-x^3-x^2-x+10 & \quad\text{has root}\quad x=1, & \quad\text{so now}\quad & S=\{-1,0,1,10\}. \\ x+10 & \quad\text{has root}\quad x=-10, & \quad\text{so now}\quad & S=\{-10,-1,0,1,10\}. \\ x^4-x^2-x+10 & \quad\text{has root}\quad x=2, & \quad\text{so now}\quad & S=\{-10,-1,0,1,2,10\}. \\ x^4-x^2+x+10 & \quad\text{has root}\quad x=-2, & \quad\text{so now}\quad & S=\{-10,-2,-1,0,1,2,10\}. \\ 2x-10 & \quad\text{has root}\quad x=5, & \quad\text{so now}\quad & S=\{-10,-2,-1,0,1,2,5,10\}. \\ 2x+10 & \quad\text{has root}\quad x=-5, & \quad\text{so now}\quad & S=\{-10,-5,-2,-1,0,1,2,5,10\}. \\ \end{align*}

At this point, no more elements can be added to $S$. To see this, let

\begin{align*} a_{n}x^n + a_{n-1}x^{n-1} + ... + a_{2}x^2 + a_{1}x + a_0 &= 0 \\ x(a_{n}x^{n-1} + a_{n-1}x^{n-2} + ... + a_{2}x + a_{1}) + a_0 &= 0 \\ x(a_{n}x^{n-1} + a_{n-1}x^{n-2} + ... + a_{2}x + a_{1}) &= -a_0 \end{align*}

with each $a_i$ in $S$. $x$ is a factor of $a_0$, and $a_0$ is in $S$, so $x$ has to be a factor of some element in $S$. There are no such integers left, so there can be no more additional elements. $\{-10,-5,-2,-1,0,1,2,5,10\}$ has $9$ elements $\to \boxed{\textbf{(D)}}$

See Also

2017 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png