1953 AHSME Problems/Problem 7

Revision as of 19:40, 1 April 2017 by Xiej (talk | contribs) (Previous page was a mess)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

The fraction $\frac{\sqrt{a^2+x^2}-\frac{x^2-a^2}{\sqrt{a^2+x^2}}}{a^2+x^2}$ reduces to:

$\textbf{(A)}\ 0 \qquad \textbf{(B)}\ \frac{2a^2}{a^2+x^2} \qquad \textbf{(C)}\ \frac{2x^2}{(a^2+x^2)^{\frac{3}{2}}}\qquad \textbf{(D)}\ \frac{2a^2}{(a^2+x^2)^{\frac{3}{2}}}\qquad \textbf{(E)}\ \frac{2x^2}{a^2+x^2}$

Solution

Multiplying the numerator and denominator by $\sqrt{a^2+x^2}$ results in \[\frac{a^2+x^2-x^2+a^2}{(a^2+x^2)(\sqrt{a^2+x^2)}}=\frac{2a^2}{(a^2+x^2)(\sqrt{a^2+x^2)}}.\] Since $\sqrt{a^2+x^2}=(a^2+x^2)^{\frac{1}{2}}$, the denominator is $(a^2+x^2)^2\cdot (a^2+x^2)^{\frac{1}{2}} = (a^2+x^2)^{\frac{3}{2}}$ $\boxed{\textbf{(D) } \frac{2a^2}{(a^2+x^2)^{\frac{3}{2}}}}$.

See Also

1953 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png