2017 USAJMO Problems

Revision as of 18:07, 19 April 2017 by Thedoge (talk | contribs)

Day 1

Note: For any geometry problem whose statement begins with an asterisk ($*$), the first page of the solution must be a large, in-scale, clearly labeled diagram. Failure to meet this requirement will result in an automatic 1-point deduction.

Problem 1

Prove that there are infinitely many distinct pairs $(a,b)$ of relatively prime positive integers $a > 1$ and $b > 1$ such that $a^b + b^a$ is divisible by $a + b$.

Solution

Problem 2

Consider the equation \[\left(3x^3 + xy^2 \right) \left(x^2y + 3y^3 \right) = (x-y)^7.\]

(a) Prove that there are infinitely many pairs $(x,y)$ of positive integers satisfying the equation.

(b) Describe all pairs $(x,y)$ of positive integers satisfying the equation.

Solution

Problem 3

($*$) Let $ABC$ be an equilateral triangle and let $P$ be a point on its circumcircle. Let lines $PA$ and $PB$ intersect at $D$; let lines $PB$ and $CA$ intersect at $E$; and let lines $PC$ and $AB$ intersect at $F$. Prove that the area of triangle $DEF$ is twice the area of triangle $ABC$.

Solution

Day 2

Problem 4

Problem 5

Problem 6

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

2017 USAJMO (ProblemsResources)
Preceded by
2016 USAJMO
Followed by
2018 USAJMO
1 2 3 4 5 6
All USAJMO Problems and Solutions