2009 AMC 10B Problems/Problem 10

Revision as of 21:57, 13 July 2017 by SS4 (talk | contribs) (Added a new solution)

Problem

A flagpole is originally $5$ meters tall. A hurricane snaps the flagpole at a point $x$ meters above the ground so that the upper part, still attached to the stump, touches the ground $1$ meter away from the base. What is $x$?

$\text{(A) } 2.0 \qquad \text{(B) } 2.1 \qquad \text{(C) } 2.2 \qquad \text{(D) } 2.3 \qquad \text{(E) } 2.4$

Solution

The broken flagpole forms a right triangle with legs $1$ and $x$, and hypotenuse $5-x$. The Pythagorean theorem now states that $1^2 + x^2 = (5-x)^2$, hence $10x = 24$, and $x=\boxed{2.4}$.

(Note that the resulting triangle is the well-known $5-12-13$ right triangle, scaled by $1/5$.)


Solution #2

A right triangle is formed with the bottom of the flagpole, the snapped part, and the ground. One leg is of length $1$ and the other is length $x$. By the Pythagorean theorem, we know that $\sqrt{x^2+1^2}$ must be the length of the snapped part of the flagpole. Observe that all the answer choices are rational. If $x$ is rational, $5-x$, which is the snapped part, must also be rational. Therefore, $1, x, 5-x$ must form a scaled Pythagorean triple. We know that $10, 24, 26$ is a Pythagorean triple, so the corresponding answer must be $1, 2.4, 2.6$. Adding together the $x$ and the snapped part, this does indeed equal $5$, so our solution is done.

See Also

2009 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png