2007 AIME II Problems/Problem 2

Revision as of 11:15, 29 July 2017 by Made in 2016 (talk | contribs) (Boxed the solutions)

Problem

Find the number of ordered triples $(a,b,c)$ where $a$, $b$, and $c$ are positive integers, $a$ is a factor of $b$, $a$ is a factor of $c$, and $a+b+c=100$.

Solution

Denote $x = \frac{b}{a}$ and $y = \frac{c}{a}$. The last condition reduces to $a(1 + x + y) = 100$. Therefore, $1 + x + y$ is equal to one of the 9 factors of $100 = 2^25^2$.

Subtracting the one, we see that $x + y = \{0,1,3,4,9,19,24,49,99\}$. There are exactly $n - 1$ ways to find pairs of $(x,y)$ if $x + y = n$. Thus, there are $0 + 0 + 2 + 3 + 8 + 18 + 23 + 48 + 98 = \boxed{200}$ solutions of $(a,b,c)$.

Alternatively, note that the sum of the divisors of $100$ is $(1 + 2 + 2^2)(1 + 5 + 5^2)$ (notice that after distributing, every divisor is accounted for). This evaluates to $7 \cdot 31 = 217$. Subtract $9 \cdot 2$ for reasons noted above to get $199$. Finally, this changes $1 \Rightarrow -1$, so we have to add one to account for that. We get $\boxed{200}$.

See also

2007 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png