2018 AMC 12A Problems/Problem 6

Revision as of 15:15, 8 February 2018 by Benq (talk | contribs) (Created page with "== Problem == For positive integers <math>m</math> and <math>n</math> such that <math>m+10<n+1</math>, both the mean and the median of the set <math>\{m, m+4, m+10, n+1, n+2,...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

For positive integers $m$ and $n$ such that $m+10<n+1$, both the mean and the median of the set $\{m, m+4, m+10, n+1, n+2, 2n\}$ are equal to $n$. What is $m+n$?

$\textbf{(A) }20\qquad\textbf{(B) }21\qquad\textbf{(C) }22\qquad\textbf{(D) }23\qquad\textbf{(E) }24$

Solution

The mean and median are \[\frac{3m+4n+17}{6}=\frac{m+n+11}{2}=n,\]so $3m+17=2n$ and $m+11=n$. Solving this gives $\left(m,n\right)=\left(5,16\right)$ for $m+n=\boxed{21}$. (trumpeter)


See Also

2018 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png