1959 AHSME Problems/Problem 1

Revision as of 20:56, 25 February 2018 by Treetor10145 (talk | contribs) (Added See Also Section)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem 1

Each edge of a cube is increased by $50$%. The percent of increase of the surface area of the cube is: $\textbf{(A)}\ 50 \qquad\textbf{(B)}\ 125\qquad\textbf{(C)}\ 150\qquad\textbf{(D)}\ 300\qquad\textbf{(E)}\ 750$

Solution

Note that increasing the length of each edge by $50$% with result in a cube that is similar to the original cube with scale factor $1.5$. Therefore, the surface area will increase by a factor of $1.5^2$, or $2.25$. Converting this back into a percent, the percent increase will be $125$%. Therefore, the answer is $\boxed{\textbf{B}}$.

See also

1959 AHSC (ProblemsAnswer KeyResources)
Preceded by
First Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png